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Best approximation in C(X) by elements of a Chebyshev subspace is governed by
Haar’s theorem, the de la Vallée Poussin estimates, the alternation theorem, the
Remez algorithm, and Mairhuber’s theorem. J. Blatter (1990, J. Approx. Theory 61,
194-221) considered best approximation in C(X) by elements of a subspace whose
metric projection has a unique continuous selection and extended Haar’s theorem
and Mairhuber’s theorem to this situation. In the present paper we so extend the
de la Vallée Poussin estimates, the alternation theorem, and the Remez algorithm.
© 1991 Academic Press, Inc.

INTRODUCTION

Throughout this paper we deal with best approximation of elements of
the space C(X) of all continuous real-valued :functions on a compact
Hausdorff topological space X in the uniform norm

I/l =sup{lf/(x)] : xeX},  feC(X),

by elements of a vector subspace G of finite dimension n2 1. For fe C(X},
the distance of f to G is the non-negative real number

d(f)=inf{| f—gll : g€ G},
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and the set of best approximations of f in G is the non-empty compact
convex subset

P(f)={geG:|f—gll=d(f)}

of G. The (set-valued) metric projection of (C(X) onto) G is the mapping
P of C(X) into the power set of G which maps fe C(X) onto P(f), and a
continuous selection of the metric projection of G is a continuous mapping
S of C(X) into G with the property that Sfe P(f) for every fe C(X).

G is called a Chebyshev subspace of C(X) if every fe C(X) has a unique
best approximation in G; it is part of the folklore of the subject that in this
case the metric projection of G, considered as a mapping of C(X) into G,
is continuous. A. Haar [6] gave the following intrinsic description of
such G.

HAAR’S THEOREM. G is a Chebyshev subspace of C(X) iff any non-zero
Sunction in G has at most n— 1 distinct zeros.

Best approximation in C(X) by elements of a Chebyshev subspace G is
governed by Haar’s theorem, the de la Vallée Poussin estimates, the alter-
nation theorem, the Remez algorithm, and Mairhuber’s theorem. J. Blatter
[1] considered best approximation in C(X) by elements of a subspace G
whose metric projection has a unique continuous selection and showed that
Haar’s theorem has the following extension to this situation.

BLATTER’S THEOREM. The metric projection of G has a unique continuous
selection iff

(1) any non-zero function in G has at most n distinct zeros;
(2) for any 1 <m< n distinct isolated points x4, ..., x,, of X,

dim{geG:g(x,)=--- =g(x,)=0}<n—m; and

(3) for any n distinct points x,, ..., x,, of X and any n signs s, ..., 8, in
{—1, 1}, there exists a non-zero function g in G with the property that for
each i=1, .., n the function s; g is non-negative in a neighborhood of x;.

In the same paper Blatter also extended Mairhuber’s theorem to the new
situation. In the present paper we so extend the de la Vallée Poussin
estimates, the alternation theorem, and the Remez algorithm. This is done
in Sections 2 and 3.

G is called an almost Chebyshev subspace of C(X) (A. L. Garkavi [4]) if
the set of functions in C(X) which do not have a unique best approxima-
tion in G is of the first category in C(X). A. L. Garkavi [4; Theorem I, and
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last paragraph on p. 186 of the English translation] gave the following
intrinsic description of such G.

GARKAVI'S THEOREM. G is an almost Chebyshev subspace of C(X) iff for
any non-zero function g€ G, card int Z(g) <n~— 1 (card = cardinal number
of, int=interior of, Z(g)=the zero set of g) and for any 1<m<n—1
distinct isolated points x, ..., x,, of X,

dim{geG:g(x;)= - =g(x,)=0}<n—m.

Garkavi’s theorem shows that in the presence of condition (1) in
Blatter’s theorem, condition (2) is equivalent to the condition that G be an
almost Chebyshev subspace of C(X). Thus, if we agree to call G a weakly
interpolating subspace of C(X) (F. Deutsch and G. Nirnberger [3]) if G
satisfies condition (3), we may restate Blatter’s theorem in the following
slightly redundant form.

The metric projection of G has a unique continuous selection iff G is a
weakly interpolating almost Chebyshev subspace of C(X} with the property
that card Z(g) <n for every ge G~ {0}.

In Section 1 of the present paper we show that a weakly interpolating
almost Chebyshev subspace G of C(X) is a mnatural habitat for
“g-alternators.” These “o-alternators” are the key to the results in Sections 2
and 3.

In order to render this paper reasonably self-contained without cluttering
it up, we found it convenient to gather some simple but not quite obvious
results of a rather general nature which we use frequently, in an appendix.

1. 0-ALTERNATORS DEFINED

In the sequel we assume that g4, .., g, is a fixed basis for G. We define
a function v: X > R” by

v(x)=(g1(x), ... gx(x)),  x€X,
set
A, ={(xy, .., x,)€ X" : two of the x; coincide},
define a function D: X"~ 4, - R by
D(p)=det(v(x,), ..., v(x,)), p=(xy,.,x,)eX"~4,

and note that a change of the basis g4, ..., g, for G amounts to muitiplica-
tion of D by a non-zero constant.



232 BLATTER AND FISCHER

We adopt the following notation: For a non-empty closed subset ¥ of X
and for f'e C(X), the norm on Y of fis

I£ly=sup{lf(x)| : xe Y},
the distance on Y of f to G is
dy(f)=inf{llf—gly:g€G},
and the set of best approximations on Y of fin G is
Py(f)={geCG:|f-gly=4dy(/)}
LEMMA 1. These conditions on G are equivalent.

(a) G is an almost Chebyshev subspace of C(X).

(b) For any geG~ {0}, cardintZ(g)<n—1, and for any
1 <m < n—1 distinct isolated points x, ..., X, of X,

dim{geG:g(x,)= - =g(x,)=0}<n—m.
(b’) For any ge G~ {0},
card int Z(g)<n—dim{heG:h=0onint Z(g)}.

(c) The set {peX"~A4,:D(p)#0} is dense in X"~ 4,,.

(¢') For any Nz=n distinct points x,,..,xy of X and any disjoint
neighbourhoods U, of the x, there exist points y,e U,, i=1, .., N, such that
D(yy, .., y;,) #0 for any n distinct indices 1 <i,, ..., i, < N; in other words,
Gl {yy, . yn} (| =restricted to) is n-dimensional and satisfies the Haar
condition.

(c”") For any member U of the uniformity % of X (for all uniform
notions employed, refer to the uniformity of X in the Appendix) there exists
a finite U-net Y in X with the property that G|Y is n-dimensional and
satisfies the Haar condition.

Proof. The equivalence of (a) and (b) is, of course, Garkavi’s theorem,
the equivalence of (b) and (b’) was observed in J. Blatter [1], and that (b)
implies (c) was stated without proof in 4. L. Garkavi [4]; for a proof see
J. Blatter [1].

(c)=(c’). Suppose (c) holds and suppose we are given N = n distinct
points x,, .., x5 of X and disjoint open neighbourhoods U, of the x,. We
may and shall suppose that N>n+ 1.

Let

{1, .l <N>} —5 {(iyy o Bn) 1 1<y, ooy 1, < N distinet }
n
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be any bijection, and suppose for a moment that for each k=1, ..., n!(Y) we
have constructed non-empty open subsets V., .. Vy, of Uy, .., Uy,
respectively, with the property that

figigksn! (1’2/) with, say, (/) = (i, ..., i), then D(y,, ..., ;) #0
forany (y,, .. y;)eViyrx - XV, 4. (*)
It is clear then that any points
y;€ Vi,,,!(g), i=1,., N,

have the required property. We now construct the V', ,, .., V., by induc-
tion over k.

Let ¢(1)=(j,, ..., j,)- By (c) and by the continuity of D, there exist non-
empty open subsets V; ,.., V, ; of U;, .., U, , respectively, such that

Ins Ji2
D(yj,s s ¥;,) #0 forany (y;, .. y,)eV, 1%, XV, 1.

Set V,,=U, forall je {1, ..., N}~ {ji, s ju}-

Now suppose we have constructed V' 4, ..., ¥, with the property () for
some 1<k<n!(¥). Let o(k+1)=(j, .. j,). Again by (c) and by the
continuity of D there exist non-empty open subsets V; ., ..., V; x.1 of
Vs = Vx> respectively, such that

D(yjla - J’j,,) #0 for any (yjp - )’jn)e Vikw1X oo X Viket

Set V1=V, forall je{l, ., N}~ {ji, o Ju}

(¢')=(c"). Suppose (¢’) holds and suppose that Ue %. There exists
a symmetric Ve such that Vo V= {(x, y):(x,2), (z, y)e V for some
z} < U and there exists a finite V-net {x,, .., x5} in X. We may and shall
suppose that N = n. By (¢’) there exist distinct points y, e V[x,], i=1, .., N,
such that G|{y, .., v} is n-dimensional and satisfies the Haar condition.
Now let xe X. Since {x,,.., x5} is a V-net, xe V[x;] for some i. Since V'
is symmetric and VoV U, xe U[y;]. Thus {y,, .., yx} is a U-net. Set

Y={yi, . ¥}

(c")=>(a). Suppose (c") holds and suppose that fe C(X)~ G. There
exists a sequence { Uy },.~ in % such that

lim Q(f, g15 0r &3 U} =0.
keN

By (c¢”), for every k€ N there exists a finite U -net Y, in X such that G| Y,
is n-dimensional and satisfies the Haar condition. Set P, (f)= {h,} for
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every k € N. By the first discretization lemma in the Appendix, the sequence
{dy(f)}ren converges to d(f) and the sequence {Ah,},.n has a sub-
sequence {A;,},.n Which converges to some he P(f). For every /e N, set

Si= (v (hy—dy () A (B +dy(f)) (v, A =sup,in).

The sequence {f;},.n converges to f and, since ||f;—hl= dyk[(f),
P(f))={hy,} for every IeN.

We have shown that the set of functions in C(X) which have a unique
best approximation in G is dense in C(X), and this (see J. Blatter [17) is
enough for G to be an almost Chebyshev subspace of C(X).

LemMA 2. If G is an almost Chebyshev subspace of C(X) then for any n
disjoint non-empty open subsets U,, ..., U, of X the following two conditions
are equivalent.

(a) There exists a signse {—1, 1} such that

sD(p)=0  forall pe|] U.
i=1

(b) Given Nzn+1 distinct points xy,..,xycU?_, U; with the
property that D(x;, ..., x; ) #0 for some 1<i,, .., i, <N, and given non-zero
real numbers a,, ..., ay with the property that sgn o;=sgn «; (sgn = sign of)
whenever x; and x; belong to the same Uy, there exists a g€ G such that

% 8(x;) #0.

Proof. (a)=>(b). Suppose (a) holds and (b) does not. Then there exist
Nz=zn+1 distinet points x,,..,xyelJ?_; U, with the property that
D(x;, ..., x;)#0 for some 1<i,,..i,<N, and there exist non-zero real
numbers «, ..., &y with the property that sgn ;= sgn «; whenever x; and Xx;
belong to the same Uy, such that 3  «;g(x,)=0 for all g G.

Set I={ie{l,..,n}:x;€U, for some je {1, .., N}}, set m=card I, and
if m<n choose for each i€ {1, .., n} ~ I an arbitrary point y,e U,.

Set J,;={je{l,..,N}:x;eU,} for every iel, and use the second fact
about R” in the Appendix (LN, |, (sgn «,v(x;))=0!) and the implication
“(a)=>(c’)” in Lemma 1 to obtain distinct points x}, i€ {1, .., N}, and y},
ie{l,.,n}~1I of X and non-zero real numbers «¥, ..., a¥ such that

» if iefand jeJ,; then x* e U; and sign o =sign a;;
« T ako(xF)=0;
« ifie{l,.,n}~1Ithen y}e U, and

¢ D{p)+#0 for any point pe X" ~ 4, with coordinates only among
the x* and y¥.
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For every (j;, ., jm)€l1,c1J: let p;,... ;) e the point of X" ~ 4, whose
ith coordinate is

xx if iel and j.eJ;
v if ie{l,.,n}~1

For every ie {1, ..,n} set

_ Zjej,-aj*v(xj*) if ierl

T lo(y) it ief{l,.n}~1

and for every i€/ let s, be the common sign of the o, je /..
The identity

Z lak---af| sD(pi. . ) =51 S,sdet(vy, ..., v,)
(tswwdm) €l Tier i

is now obvious. By (a) and by the construction of the x*, y*, and of, ail
the terms of the sum on the left are positive. Since 3, ; v, =0, the determi-
nant on the right is zero. We have reached a contradiction.

(b)=(a). Suppose (b) holds. By the implication “(a)=(c)” in
Lemma 1 there exists a point p=(x, .., x,) e[ [;_, U, such that D{p)#C.
Set s=sgn D(p). Since D is continuous there exist open neighborhoods
Vi, s V,of Xy, .., x,, respectively, such that V, < U, for all i and sD(g) >0
for all ge]17_, V,- We show by induction over k=0, ..., » that

sD{q) >0 whenever ¢g=(y,, ..., y,) € X" ~ 4, 1s such that
yieUifl<i<kand y,e V,ifk+1<i<n. ()

By our choice of the ¥, (x) holds for k£ =0. Suppose then that () holds
for some O<k<n and suppose that sD(g)<0 for some
G={(V{> s yu)EX"~ A, such that y,elU, if 1<i<k+1 and y,eV¥, if
k+2<i<n. By our hypotheses, y,,,€ Ui, ~clV,,, (cl=closure of).
Choose y,,.;€V,,, and use the continuity of D and the implication
“(a)=(¢)” in Lemma 1 to obtain z,, .., z,,, € X such that

® ZiEUi ]f lélék, Zk+1€Uk+1NC1 Vk+17 Z; € Vi lf k+2<l<n
and z, € Vi

« D(z4, .., 2, v Zne1)#0for i=1, .., n (= omit what is under it);
and

e sD(z, s 2,) <0.

Obviously, there exist o;,..,a,,;€R not all zero such that
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"+ 1a,0(z;)=0. By the third fact about R” in the Appendix, there exists
ayeR~ {0} such that

0, =Y (— 1Y D(Zy, vy 23y s Znyy)  for i=1,.,n+1.

Thus, all of the «, are different from zero. Since sD(z, ..., z,) <0,

sgn o,y =sgny(—1)"*'sgn D(z,, .., z,) =sgn y(—1)"s,

and since, by the induction hypothesis, sD(z{, s Zg» Zy 415 Zi 425 = Z2) >0,
PR
sgn o, =sgn y(— 1)+t sgn D(zy, s Zi s 15 s Zny 1)
= Sgn Y(_l)k+l (—1)n+k+lD(Zla eoey Zk: Zn+19 Zk+2’ (31X Zn)
=sgny(—1)"s.

Thus, sgna,,;=sgna,, ;. This contradicts (b), whence (x) holds for
k=mn, and this is just (a).

COROLLARY. G is a weakly interpolating almost Chebyshev subspace of
C(X) iff X" ~ A,, is the disjoint union of the closures (in X" ~ A4,') of the sets
pos(D)={peX"~4,:D(p)>0} and

neg(D)={peX"~4,:D(p)<0},
in symbols,
X"~ A,=clpos(D) U cl neg(D).
Proof. Fix any n disjoint non-empty open subsets U, .., U, of X. By

the first fact about R” in the Appendix, condition (b) in Lemma 2 is
equivalent to the condition

n

0 ¢ int conv ( U siu[U,-]) for any n signs sy, ..., s, {—1,1}.

i=1
Now fix s, .., s,€ {—1, 1}. By your favourite separation theorem,
n

0 ¢ int conv ( U s,-v[U,-]) iff there existsa ce R" ~ {0}

i=1

such that {¢c,a) >0 forall ae | s;v[U;] (-, ) =scalar product).

i=1
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Finally, fix c=(¢y, ... ¢,)eR"~ {0} and set g=37_, ¢; g;. Obviously

{c,a>=0  forall ael] s[U/]

fem )

iff 5,2(x)=0 forall i=1,.,»n andall xeU,

The Corollary now follows from Lemmas 1 and 2.

DeriNttion. Suppose that G is a weakly interpolating almost
Chebyshev subspace of C(X).
Appealing to the Corollary, we define a sign function

6:X"~d4,- {11}
Jfor the function D by

1 if peclpos(D),

a(p) {—1 if peclneg(D), pe "

We set
Ay 1= {(X1, w0 X, 1) € X" two of the x; coincide },

define a reference in X to be any point of X" "'~ 4, ,, and set, for any
reference R=(xy, .., x,,,) in X,

N
Dri=D(xy, s Xiy s X ) )

~ for i=1,.,n41.
G = O{Xy, ooy Xgy oy Xy 1)

For a function f'e C(X) ~ G, a o-alternator of fin G is a function ge G with
the property that for some reference R=(x,, .., X,,,) in X and for some
sign se {—1,1},

(f‘g)(xi)=3(“1)iﬁ'x,i if—gl for i=1,.,n+1
{see M. Sommer [10, 117).

We note that the concept of a s-alternator is independent of the par-
ticular basis for G used in its definition (see the note on D at the beginning
of this section) and also that it is permutation invariant as it should be: If
R=(xy, .., x,,) is a reference in X, if = is an element of the permutation
group of order n+ 1, and if R, is the permuted reference (x,(1y, v Xppet 1y)s
then, representing m as a product of transpositions and using induction
over the number of transpositions, one easily sees that

(=Dor ,=sgnn(—-1)Pop ., for i=1.,n+1
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9

Remarks. 1. We note that our proof of “(b)=(c)=(c")=(c")=(a)
in Lemma 1 is a new proof for the difficult haif of Garkavi’s theorem.

2. The condition (c”) in Lemma 1 should be contrasted with the
following

EXAMPLE. Let o be an ordinal such that
X >222“0
set X=T[0, 11%¢ define g,, g, € C(X) by
g,=1, g,=T4 {=projection onto the first factor),

and set G=span{g,, g,}. Then G is a 2-dimensional almost Chebyshev
subspace of C(X) which on no dense subset of X is 2-dimensional and
satisfies the Haar condition.

Proof. By Garkavi’s theorem, G is a 2-dimensional almost Chebyshev
subspace of C(X). Now suppose that G is 2-dimensional and satisfies the
Haar condition on some subset ¥ of X. It is clear from the definition of G
that card ¥ < 2% and this implies that Y is not dense in X: Were Y dense
in X, then (see, e.g. L. Gillman and M. Jerison [5;9A])

card X <22,
and therefore

Cart R
N < 2% = 280 R (DR Re _oapd ¥ 22 927
o

contrary to our choice of a.

3. In the light of the equivalence “(a)<>(c)” in Lemma 1, the
Corollary suggests the question if the condition that G be a weakly inter-
polating subspace of C(X) is equivalent to the condition that
cl pos(D)nclneg(D)=¢. The answer to this question is “no,” as the
following example of F.Deutsch and G. Niirnberger [3] shows: Set
X=[-2,2], define g,, g, € C(X) by

0 for —-2<x<0,
gl(x)={ g>(x) = 1 — || for |x| <2,

for 0<x<2,

and set G=span{g,, g,}. Then G is a 2-dimensional weakly interpolating
subspace of C(X), but (—1, 1)ecl pos(D) nclneg(D).

W. Li [9] showed that both the condition that G be a weakly inter-
polating subspace of C(X) and the condition that cl pos(D)ncl neg(D)=4¢
are satisfied whenever the metric projection of G has a continuous selection.
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2. EXISTENCE AND UNICITY OF 6-ALTERNATORS;
UNIQUE ¢-ALTERNATORS = UNIQUE CONTINUOUS SELECTIONS

For this section we assume that G is a weakly interpolating almost
Chebyshev subspace of C(X).

An admissible reference in X is a reference R=(x,, .., x,, ) in X with
the property that dim(G|{x,, .., x,,,, }) =#n; another way of saying this is
that the vectors v(x,), ..., v(x,, ;) span R”, or then that at least one of the
determinants Dy, .., Dg, ., is different from zero. By the implication
“(a)=>(c’)” in Lemma 1, the set of admissible references in X is dense in
the set X"*'~4,,, of all references in X, and by the equivalence
“(aY<>(b)” in the fact from linear algebra in the Appendix, every reference
in X is admissible iff card Z(g) < for all ge G ~ {0}.

For an admissible reference R=(xy, .., x,, ) in X, we set

n+1 —1
,uR,l:(Z ’DR,j|) (=1)Dg,;, for i=1,.,n+1;
j=1

by the third fact about R” in the Appendix, the numbers up , are charac-
terized by the equations

n-+1 n+1 ]
z Up0(x;)=0 and Z (_1)’GR,iHR,i= L

i=1 i=1

We adopt the following notation: For a non-empty closed subset ¥ of X,
a reference in Y is a reference in X whose points all belong to ¥, and for
feC(X) and a non-empty closed subset ¥ of X such that d,(/)>0, a
c-alternator on Y of f in G is a function ge G with the property that for
some reference R =(y;, .., yn,1) in Y and for some sign se {—1, 1},

(f=&)y)=s(=1)Yop;llf—gly for i=1 ..n+L

THE DE 1.A VALLEE PoussIN ESTIMATES. 1. For any g€ G, any reference
R=(xy, .. X,,1) in X, and any sign se {—1, 1},

inf{s(—1)o,,8(x;):i=1,..,n+1}<O0.
2. IffeC(X) and g € G are such that
s(=1)'og;(f—g)x)>0, i=L..n+1,

for some reference R=(x,, .., x,,1) in X and for some sign se {—1,1},
then

de(f)Zinf{|(f—g)x) :i=1,.,n+1}
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(the notation “dg(f)" is slightly abusive!), and
sup{s(—1Yor,(f—h)x):i=1,.,n+1}>0  forall heG.

3. IffeC(X), if Y is a non-empty closed subset of X with the property
that dy(f)>0, and if g is a o-alternator on Y of f in G, then g is a best
approximation on Y of f in G.

Proof. 1. Suppose that ge G is such that
s(—1)Yog,8(x,)>0, i=1,.,n+1,

for some reference R = (x, ..., x,,, ;) in X and some sign se {—1, 1}. Then,
by the continuity of g, by the implication “(a)=-(¢')” in Lemma 1, and by
the Corollary, there exists an admissible reference R* = (x¥, .., x}¥, ) in X
such that

S(—1)0gs, 8(xF)>0, i=1,.,n+1,

and it follows that

n+1 n+1
0= pre,8(x})=5 Y | 18(x}),

i=1 i=1

a contradiction.
2. Letf g, R, and s be as specified, and suppose first that

dp(fy<d=inf{|{(f—g)(x)| :i=1, ., n+1}.
Then there is an he G such that || f— k|l <d, and it follows that
s(—=1) o dh—g)(x)=5(=1)0g (f—g)(x;)
=s(—=1)'og (f—h)(x;)>0
for i=1,..,n+1, (*)
a contradiction to 1. Now suppose that for some he G
S(—1or(f—h)x)<0 for i=1,.,n+1.

Then we again have (x)}—although for different reasons— and (%) still
contradicts 1.

3. Letf, Y, and g be as specified, say,

(f—g)(}’i)=s('_1)io'k,i lf—gly, i=1,.,n+1,

for some reference R=(yy, .., ¥,41) in ¥ and for some sign se {—1, 1}.
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Then, by 2,

I1f—glly=dy(f)Zde(f)
Zinf{|(f—g)(y)l :i=1 ., n+1}=]f~¢gly.

whence ge Py (f).

TurorReM. 1. Every function in C(X)~ G has a c-alternator in G.
2. Every function in C{(X)~ G has a unique o-alternator in G iff any
non-zero function in G has at most n distinct zeros.

3. If every function fe C(X)~ G has a unigue o-alternator g; in G,
then the mapping §: C(X)— G defined by

(g i feC(N)~G
Sf‘{f i feG

is a continuous selection of the metric projection of G.

Proof. 1. Fix fe C(X)~G.
There exists a sequence {U },.n in % such that

Hm Q(ﬁ gla erey gn; L’k)zo
keN

By the implication “(a)=-(¢")” in Lemma 1, for every ke N there exists a
figite U,-net Y, in X such that G|Y, is n-dimensional and satisfies the
Haar condition. Set Py (f)= {h,} for every keN.

S. 1. Zuhovitzky [12] proved (the unordered alternation theorem for
approximation by Chebyshev subspaces) that for each ke N there exist a
reference Ry = (¥4, . Vs 1) in ¥, and a sign s, € {—1, 1} such that

(f- hk)(yi,k)zsk(_l)io-Rk,i If=hel ¥y for i=1,.,n+1L

By the first discretization lemma in . the Appendix, the sequence
{dy,(f)}re~ converges to d(f) and the sequence {/,}, .~ is a bounded
sequence all of whose cluster points liec in P(f). Let /4 be one of these
cluster points. There exists a subnet{h,,},. ;. of the sequence {4}, .~ Which
converges to 4 and for which

« for each i=1,..,n+1, there exists a point y,e X such that
im,ep y 0=y

« for each i=1, .., n+ 1, there exists a sign s/e {—1, 1} such that
0 g,,=s; for-all /e L; and

« there exists a sign se {—1, 1} such that s, =s for all /e L.
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Clearly
(f=m)(y) =tm (f = ) (yi) = (= 1)si |L.f— Al

for i=1,.,n+1.

Thus, if all the y; are distinct, then R=(y;, .., ¥,,1) is a reference in X
and, by the Corollary, s; =04, for i=1, .., n+ 1, whence % is a g-alternator
of fin G. It remains to be seen why no two of the y, can coincide.

Suppose that at least two of the y; coincide. Choose auxiliary points if
necessary to obtain distinct points z;, ..., z, of X so that each y, is a‘zj, and
use the Corollary to obtain disjoint open neighborhoods U, .., U, of
Zy, s Z, Tespectively, and a sign s'e { —1, 1} such that

s’D(p)=0  forall pel] U.

i=1
Fix /e L sufficiently large that

forevery i=1,.,n+1, if y,eU then y,,eU,.

Obviously, there exist oy, ..,a,,;€R not all zero such that
"L a0(y,x) =0. By the third fact about R” in the Appendix, there exists
a yeR~ {0} such that

0;=9(~1)'Dp,, for i=1,.,n+1
Thus, all the «; are non-zero and

sgna;=sgny(—1)og,;, for i=1.,n+l

Now, by our choice of Uy, ..., U,, if y,,, y;« € Uy, then y,=y;, whence
s(=1)'s; I f—hll = (f=h)y) = (f=h)y)
=s(—1)s; I f—hl,

whence (—1)'s;=(—1)s], whence sgna,=sgn a;: We have reached a
contradiction to Lemma 2.

2. Suppose first that some non-zero function g, in G has n+ 1 dis-
tinct zeros xi, ..., X, , . Set R=(xy, .., x,, ), choose a function ke C(X)
with the properties

lhl=1 and hix)=(—1)og,; for i=1,.,n+1,
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f=h<1 |§§:|>

Then (—1)og,f(x;)=1 for i=1,.,n+1, and therefore, by the de la
Vallée Poussin estimates,

and set

d(f) 2 de(f) = 1.
On the other hand, for |¢| <1,

|g0|_ 1ol 180l

’f Te| < 'f'+'c'ngon_'h"1 ngon“'ugou
_Ig_ol) ol 8l _

<<1 AR T

Thus, d(f)=1 and c(g/l|goll) € P(f) for all |¢| < 1. Now,

(f—— T ”>(x) (—1Yog; for i=1,.,n+1 and |¢|<!

shows that all the c( go/llgoll ), |¢] <1, are g-alternators for fin G. So much
for this half of 2.

In order to prove the other half of 2, we suppose that card Z(g) < # for
all ge G~ {0} and recall that this mcans just that any reference in X is
admissible. We commence with a

Lemma. If g is any function in G and if R= (x4, .., X, ) is a reference
in X such that

(—1)or,g(x)<0  for i=1,.,n+1,

then, for every i=1, ..,n+1 such that Dy ;#0, the function (—~1) oy, g is
non-negative in a neighborhood of x;.

Proof. Let g and R be as specified. Set
I= {le {1, s B+ 1} :DR,,'?QO}

and observe that
n+1 n+1

0= pr.gx)=—3 lpzllgx)l

i=1 i=1

640/66/3-2
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whence
g(x;)=0 forall iel (%)
Set
J={1l,.,n+1}~1L

If J=¢ then, by (x), g=0, so that the conclusion of the lemma holds for
trivial reasons. Suppose therefore that J+# ¢, set

H={heG :h(x;)=0for all iel},

and fix ie I By the implication “(a)=>(c)” in the fact from linear algebra
in the Appendix,

dim H=n—card I+ 1 =card J.
For each je J, define a function 4, G by
N
hi(x) =det(v(x1), oy 0(X;); vor V(X4 1)) 5y = 0

where the subscript “x;= x” indicates that the point x; in the determinant
is to be replaced by the variable x € X. Since

0 if ke{l,.,n+1}~{ij},
By () =1 D=0 if k=i jes
(=1 *Dg,#0  if k=],

the functions {#;:je J} form a basis for H. By (+), g€ H, ie,

g=7Y ch; forsome c;eR.

jed
Now, since
—(—1) o ; lgx)l =g(x;) = c;hx;)
=c(—1)"*lap, 1D,  jeJ,
we have that
(—1)og,0,¢,20 forall jeJ,

and by the Coroliary, for each jeJ there exists a neighborhood U; of x;
such that

o hi(x)=0 forall xeU,.
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Combining the last two sets of inequalities, we obtain that
(— l)ioR’ig(x) = Z (— l)iO'R,ithj(x) = Z |le Ihj(x)f =20
jedJ jeldJ
for all xe(\;., U;. The lemma is proved.

We now suppose that some fe C(X) ~ G has two og-alternators 4, and 4,
in G, say,

(f=h)x ) =s(=1)og, 1 f—hl, i=1,.,n+1, k=12,
for references R, = (x, 4, .., X,, 1.} in X and signs s, € { —1, 1}. Set
Xe={x,,:Dp #0}, k=12,
For any ge P(f),
$i(—1) 0, (b — 8)x k)
= 51— 1) 0 g (f = &)1 ) = 5:{ = 1) T g (/= hic)(x; 1)
=s5i(— 1) og, (f—gHx.i) — d(f) <O,
i=1,.,n+1, k=1,2.

A first two-fold appeal to the lemma, once with 4, — /4, on R, and once
with A,—h;, on R,, tells us that h;=h, on X,uX, Thus if
card(X, U X,)=n+1, h;=h,, and we are done. Suppose thercfore that
card(X, U X,) < n. Set

H.={heG:h=00nX,}, k=12
Since
HnH,={heG:h=00nX,UX,}
and
H +H,c{heG:h=00nX,nX,},

by the implication “(a)=>(c)” in the fact from linear algebra in the
Appendix,

n—card(X; nX,)+12dim{heG:h=0o0n X, n X,}
=>dim(H, + H,)=dim H, + dim H, —dim(H, n H,)
=(m—card X, + 1)+ (n—card X, +1)

—(n—card(X, v X))+ 1)=n—card(X| n X,)+1,
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whence

dim{heG:h=00nX,nX,} =n—card(X;n X,) + 1.

This implies first that X; N X, # ¢ and then that the vectors {v(x)},cx, ~x,
are linearly dependent. By the implication “(a)=>(d)” in the fact from
linear algebra in the Appendix, the latter is possible only if X, = X,. Since
hi=h, on X; =X,, for any x,, € X, and any x;,€ X, such that x,, = x;, ,,

s1(=1) 0, d(f) = (f = hy)(x;1) = (f = ha)(x;2) = 55(— 1) 0, (),

whence
si(—1)og, ;=s(—1 )jO'Rz,j-

Now, a second two-fold appeal to the lemma tells us that
hy=h, in a neighborhood of X, =X,

and this, since not all points of X, = X, are isolated points of X, because
G is an almost Chebyshev subspace of C(X), finally implies that A, =4,
also in this case.

3. Suppose that every function fe C(X)~ G has a unique o- alter-
nator g,in G and suppose that the selection S of the metric projection P
of G has been defined according to 3. Since P is upper semi-continuous, S
is continuous at all points of G. Suppose therefore that {f;}i.n is 2
sequence in C(X) ~ G which converges to fe C(X)~ G. For every ke N, let
Ri= (X1 s X, 1.4) be a reference in X and s, € {—1, 1} a sign such that

(fe— ka)(xi,k)=sk(_1)iaRk,i I fe — SFell for i=1,.,n+1

The sequence {Sf;}icn is @ bounded sequence all of whose cluster points
lie in P(f). Let g be one of these cluster points. There exists a subnet
{ 8%} e Of the sequence {Sf;}, .~ Which converges to g and for which

e for each i=1,..,n+1, there exists a point x,e€ X such that
lim, ., Xik = Xis

o for each i=1,..,n+1, there exists a sign s;e {—1, 1} such that
O Re,i = 5 for all /e L; and

* there exists a sign se { —1, 1} such that 5,,=s for all /e L.

Clearly,

(f=&)x) =lim (fyy— Sfe) (i) =s(=1's; If—gl  for i=1,.,n+1.
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Suppose that at least two of the x, coincide. Choose auxiliary points if
necessary to obtain distinct points z,, .., z, of X so that each x,is a z;, and
use the Corollary to obtain disjoint open neighborhoods U, ..., U, of
24, .y Z,,, Tespectively, and a sign s'e {—1, 1} such that

sD(p)=0  forall pe]] U,
i=1
Fix /e L sufficiently large that
forevery i=1,.,n+1, if x,el; then x,,eU,.

By the Corollary, there exist disjoint open neighborhoods V', .., ¥, ., of
X1 k> - Xny 1,k TESpectively, such that

forevery i=1,.,n+1,5/D(p)=0
for all pele---><I//\,-><---><Vn+1
and
forevery i=1,..,n+1, if x;,eU then V,cU,.

Use the implication “(a)=>(c’)” in Lemma 1 to obtain points x*eV,,
i=1,..,n+1, such that G| {x¥, .., x},,} is n-dimensional and satisfies the
Haar condition, and set R*=(x},.. x}* ;). Obviously, there exist
Oy, oy, 1 €R not all zero such that 37+ ! a,0(x*)=0. By the third fact

i==1

about R” in the Appendix, there exists a ye R~ {0} such that

#;=9(—1)'Dge;, for i=1,.,n+1
Thus, all the «, are non-zero and

sgno;=sgn y(—1)oge, for i=1,.,n+1

Now, by our choice of V{, ..., V,, |,

Ogei=0p,i=S5i for i=1,.,n+1,
and therefore, if x}*, x* € U, then x,= x;, whence

s(—1)'si | f—hll = (f—h)(x;)=(f— h)(x;)
=s(—=1)/s; | f~hl},

whence (—1)'s;=(—1)’s/, whence sgn «, = sgn «;: We have reached a con-

tradiction to Lemma 2. This shows that no two of the x; coincide. Thus
R=(xy,..sx,,) is a reference in X and, by the Corollary, o, ,;=s; for
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i=1,..,n+1, whence g= Sf. This shows that lim, _n Sf, = Sf and we are
done.

Remarks. 1. The Theorem, of course, characterizes the values of the
unique continuous selection in Blatter’s theorem as unique o-alternators,
just as the alternation theorem characterizes unique best approximations as
unique alternators. We call attention to the fact, however, that our proof
of the Theorem also provides a new and simpler proof of the difficult half
of Blatter’s theorem; that we were working on such a proof was announced
in[1].

2. We note that the function f used in the first part of the proof of
2 is just the function Haar used in the proof of his theorem.

3. Simple examples show that the g-alternators in 1 cannot always be
taken on admissible references. Here is one: Set X=[—1,1], define
g1 € C(X) by

glx)=1—[xD"%  |xl<1,

and set G=span{g,}. Then G is a 1-dimensional weakly interpolating
almost Chebyshev subspace of C(X), the function fe C(X) ~ G defined by

fx)=x, |x|<],
has 0 for its only best approximation in G, and the only reference on which

f o-alternates is the non-admissible reference R=(—1, 1).

4. A. J. Lazar, P. D. Morris, and D. E. Wulbert [8] proved the
following

THEOREM. If G is l-dimensional, its metric projection has a continuous
selection iff
(i) card bdry Z(g,)<1 (bdry =boundary of); and
(ii) if bdry Z(g,)={x}, then one of g, and —g, is non-negative in a
neighborhood of x.

In order to prove the sufficiency part of their theorem, Lazar, Morris,
and Wulbert set

H={g|X~intZ(g,):g€G}

and observe that, given a continuous selection S’ of the metric projection
of C(X ~int Z(g,)) onto H, the mapping S: C(X) — G defined by

S'(flX ~int Z(g,))(x) if xeX~intZ(g,)

Sf(x)={0 if xeint Z(g,),

fe C(X),
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is a continuous selection of the metric projection of &; they then set out to
construct such an S’. Now, it is obvious that H is a 1-dimensional weakly
interpolating almost Chebyshev subspace of C(X~int Z(g,)) with the
property that card Z(h)<1 for all he H~ {0}, and therefore, by our
Theorem, the metric projection of H has a unigue continuous selection,
namely, the mapping which leaves the elements of H fixed and sends each
element of C(X ~int Z(g,)) ~ H onto its unique o-alternator in H. Thus, the
Lazar—Morris—Wulbert selection may be obtained via unique o-alternators.

5. M. Sommer [10, 11], in his approach to g-alternators, uses,
among others, as a crucial condition on G that it be Haar on the comple-
ment of some finite subset of X. We remark in passing that J. Blatter [1],
in his extension of Mairhuber’s theorem, has provided examples of G’s
which admit unique o-alternatores but do not satisfy this condition.

3. CALCULATING UNIQUE CONTINUOUS SELECTIONS

For this section we assume that G is a weakly interpolating almost
Chebyshev subspace of C(X) with the property that any non-zero function
in G has at most n distinct zeros, and that f is a fixed function in' C{X)
which does not belong to G. We want to design an iterative algorithm
which calculates the value at f of the unique continuous selection of the
metric projection of G, that is to say, the unique c-alternator of fin G.

The basic process in this algorithm is that of solving systems of linear
equations with a matrix

g1(x1) e ga(xy) (—I)IJR,I
My= : : :

H

gilxni1) - &alXpi1) (—1)n+1gi€,n+l

R={(xy,..,x,,,) a reference in X. The Laplace development of det M, by
the last column is

n+1
det M= Z (“l)n+l+i(“1)i‘7k,iDR,:"
i=1
Since g5 ;D g ;20 for all i, and since D ;#0 for some i, it follows that
(=1)"Tidet My>0;

i.e., we are dealing with non-singular systems. Exactly which systems we are
solving, and why, is explained in

APPROXIMATION ON A REFERENCE. Let R=(xi, .., X,, ) be a reference
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in X with the property that dgx(f)>0 (since dim(G+Rf)=n+1, such
references exist!). Then the solution (cg y, .., Cr n1) ER"™! of the system

Cr1 Sxy)
Mg =
Crn+1 f(xn+1)
has the properties

(1) the function gp=237_, cr;8; is a o-alternator on R of f in G;
(2) the modulus dp=|cg , .| is the distance on R of f to G; and
(3) the sign sg=sgn cy, . satisfies the identity

n+1

Spdp= Z )uR,if(xi)'
i=1

Proof. By the definitions involved,
(f—gr)(x)=(—1)0g:CR 011 for i=1,.,n+L

This shows first that cg,,#0 (dg(f)>0!), and then that g is a
g-alternator on R of fin G. Thus, by the de la Vallée Poussin estimates,
gr€ Pr(f), and therefore dp = || f— gl g = dr(f). Finally,

n+1 n+1 n+1

Z #R,if(xi)z z ﬂR,i(f—gR)(xi)=SRdR Z (_1)i°'R,iﬂR,i=SRdR-

The key device in our algorithm is an exchange procedure E which
assigns to each pair (R, x) in the set

R={(R,x):R is a reference in X with the property that
dr(f)>0, and x is a point in X with the property that
[(f—gr)(x)| >dg; so that, in particular, the point x does not
belong to the reference R}

an exchange reference E(R, x) in X, namely, the reference R with one of its
points exchanged for x; the exchange index e(R, x), that is to say, the index
of the point of R to be exchanged for x, is given by

THE EXCHANGE RULE. Let (R=(xy,..,X,.1),X)EX and set
s=sgn(f—ggr)(x). Then there exists a unique index m=e(R, x) in
{1, ..,n+1} with the property that, if the reference R = (X}, .., Xp,1)=
E(R, x) in X is defined by

= X lf i=m
Tl i ie{l,.,n+1}~{m},
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[y

then, for some s'€ {—1, 1},
S(=Dop {f—gp)x))>0  for i=1,.,n+1, (1

or, equivalently (note that . ,,= 0z '),
O =8Sp(—1)"0gmor: for ie{l,..n+1}~{m}; (1"

7

this index m and the associated reference R' have the additional properties
that, if (Vg1 s Vans1) ER?T 1 is the solution of the system

YRr1 sSg g1(x)
M7 : = ) (* = transpose of ),
VR,n S8R gn(x)
VRn+1 1

which is to say that
n+1 n+1 )
Z vR,iv(xi)zssRv(x) and Z ("l)lO'R,iVR,i: L,

i=1 i=1

then

(—D)"0gmVim>0 and

@ﬂ=inf{“—’*’—" ie{l, . n+1} and(—l)"ak,,.v&,.>o}; )
VR.m Vg,i
.uR’,m= (—_l)mo-R,mluR_-’_’E and
vR,m
Prii=5Sp(—1)"0 g (uR,[—HR—"va,,) for ie{l, . n+1}~{m};
R,m
(3)
dR’(f)=dR(f)+I:im (I(f—gr)(x) — dr(/)). (4)
R, m

Proof. Unicity. Suppose that two distinct indices m, and m, have the

required property (1'), and denote by R} and R), the respective new references.
Then, by (1'),

— m —_ m3
O-Ri,mz_ssR(—l) 16R,m1GR,m2 and O’Ré,mx—SSR(_l) O’R,mzo-R,mlﬁ

whence

O.Rﬁ,ml = (_ 1)m1+mZURi,m2:
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whereas, by the definitions involved,

O Rsm =~ (= 1) "0 g .

Existence. By the Corollary, by what we have seen in approximation on
a reference, and by the de la Vallée Poussin estimates, there exist disjoint
neighborhoods Uy, .., U, ., and U of x, .., x,,, and Xx, respectively, with
the properties

o is constant on the product of any n of Uy, .., U, s and U; (5)

for any reference Refe U x --- x U, and for any point ye U,
dred /) >0, SRef = SR> S(f — gret)(¥) > dres- (6)

Comparing this choice of Uy, .., U,,., and U with condition (1'), we
see that if the exchange index map e is to exist, we must have
e(Ref, y)=e(R, x) for all pairs (Ref, y) with-RefeU;x --- xU, ., and
ye U. We use a special such pair to construct e(R, x). By the implication
“(a)=(c')” in Lemma 1, there exist x¥, .., x¥, , and x* in U,,.., U,
and U, respectively, such that the restriction of G to {x, .., x}¥ ,} u {x*}is
n-dimensional and satisfies the Haar condition. We set R* = (x¥, ..., x¥, )
and we denote by (Vge 1, s Vro.,.1) € R”™! the solution of the system

Ve 1 55 geg1(x*)
M : = : )
i 55 gegn(X*)
vR*,n+1 1

Since 374! (—1) 6 ge Vg+ ;= 1, the set

i=1

I={ie{l,.,n4+1}:(—1) 0 g Vgs,>0}

is non-empty. We choose an index m e I with the property that
Brom  ing {”——R*’i tie I},
VR*,m VRe;

we define a reference R*' = (x}', .., x¥, ;) in X by

x.*/ =

i

{x* if i=m
xF o if ie{l,.,n+1}~{m},

and we claim that

O ;i =8Spe(—1)"0 gs O s, for ie{l,.,n+1}~{m}. (7)
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In order to prove this claim, we set

& = (m l)mgi?:*,m éfﬂm and
vR*.,m N
(8)
o= 88 g — 1) 0 ge 1 (pR*’,»w'uR*"” VR*,s) for ie{l,.,n+1}~{m}.
R* m
Then
n1
z ao(xF)
i=1
]l N n+1
= (= 1)"0 gy 2 0(x*) + Y 55ga(— 1) O gom
VR*’m je==1
ism
Hr=,
X (HR*,:""“—“—M vm,,) v(x)
vR"',m
. r+1
== 1) 0 g —L0(X*)+ Y. 5Spel —1)70 ge
VR*,m i=1
Hpx
X (#R*,i—— = VR*,:‘) o(x¥)
vR"‘,m
Hopx o Hge
= (= 1) 0 a2 0(X*) = Y 5500(—1)70 gy =Y g 0(xF)
’ VR*,m fe= 1 ’ V:’i“*,m ;

n+1
=88 g —1)" O go %—533—”1 (ssmu(x*) -y vR,_,-v(x?‘)> =0, (93

R*,m =1

From observation of the fact that (—1)'0 g« jigs ;>0 for i=1, ., n+1, it
follows from the definition of J and the choice of m that

8Sa —1)"0 e (= 1Y 0 e ;0,20  for ie{l,.,n+1}~{m}. (10)

Using (10), we obtain from (8) that

i=1 VR* m i=1 VR* m
iEm

a4+ 1 “R* nd . ﬂR*
Z |“i|=v 4 Z (”I)ZUR*,I'(MR*,:'“V ’mVR*,i)

l“ . n+1 . ‘u «
=Ry Z (wl)loR*,i(tuR*aiva - "R*,i) = 1. (14

vR*,m =1
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Combining (9) and (11) with the third fact about R” in the Appendix, we
see that there exists a ye { —1, 1} such that

Ppe i = Y0 for i=1,..,n+1 (12)

Since (—1)'0 gw spigw,;>0 for i=1,.,n+1 (and since oz« =0z ')
(12) and (8) imply that y=1, and then (12) and (10) imply (7). Now
observe that (7), (6), and (5) imply (1').

Additional properties. By the definitions involved,

=(_1)mDR',m=(_1)mDR,m= |det Mgl u
Hrom=Tdet Mol |det My|  ldet Mgl ' ®m

(13)

and, using the fact that v(x) =ssx X7 v 0(x;),

(_l)l m+i
NR',i=mSSR(VR,mDR,i+(_1) * +1"R,z‘DR,m)
det Mg| .
=||(i<3t_M§,—|SSR(ﬂR’ivR’m_#R’va’i) for ie{l,.,n+1}~{m}.
(14)
Combining (13) and (14) with (1'), we sce that
n+1 .
1= Z (_1)IO-R’,1'I“‘R’,1'
i=1
[det M 4| . nt1 ;
=M(_I) Orm| Brmt+ Z (_1)UR,i(ﬂR,iVR,m_,uR,mVR,i)>
iZm
|det M|
== (-1)" .
et M| D TR R (15)

Now, (15) implies immediately that (—1)" 6z, Vg ., >0, which is the first
part of (2); plugging (15) into (13) and (14) gives (3); by (3) and (1),

0<(- 1)iaR’,i”R’,i= (— 1)i0'R,i (#R,i‘%‘”l vR,i) for i=1,.,n+1,

R,m

and this trivially implies the second part of (2); finally, by (1),
((=1)"0p ) (—=1D)'op:(f—ge)(x))>0  for i=1,.,n+1,
whence, by the de la Vallée Poussin estimates,

dp(f)>0 and Sp=5(—1)"6g m>
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and it follows, by what we have seen in approximation on a reference and
by (3), that

n+1 n+1

dp(f)=dr=sp Z Brif(x]) =5z Z P (f— gr)X)
i=1 i—1
=Y (D oratns |~ £r)Cx])

= dal£)+ 552 (| (f= g ) (0] —drl(f).

and this is (4).

As to be expected, our algorithm commences with a discretization of our
original problem. This discretization is solved by

THE DISCRETE ALGORITHM. Let Y be a finite subset of X, and let R, be
a reference in Y with the property that dg (f)>0. Then the algorithm
1. Set R=R,.
2. Calculate gg, dg, and sg.
3. Calculate a point yeY with the property  that
(f=gr)W =/ —grlly, and set s =sgn(f—gg)y).
4, Exhibit R, gg, dg sg, ¥, [{f—gr)(¥)l, and s.

5. If Wf—gr)»)| >dg, calculate e(R, y) according to the exchange
rule, set R=E(R, y), and go to step 2.

6. If [(f—gxr)(¥)l =dyg, stop.

is finite, ie., reaches step 6; it is obvious that when the algorithm reaches step
6, then g is a o-alternator on Y of f in G.

Proof. Suppose that the discrete algorithm is not finite. It then exhibits,
upon executing step 4, a sequence (R, y,), (R, ¥2), .. of pairs such that
forj=1,2, ..

o R;=(y1js Yur1,,) 15 a reference in Y with the property that
dg(f)>0;

* y; is a point in Y with the property that |(f—gr)(y;)| > dg; and

* Rj+1=E(Rj7 ¥;5)-

Since Y is finite,

R,=R,  forsome 1<j,<j,.
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Since, by (4) of the exchange rule,
dr () <dg, ()< - <dr(f):

it follows that all these numbers are equal to some d. Set

r=inf{|(f—gr)(¥)| 1 /1 <i</a} >4,
and set
s;=sgn(f—gr)¥)) for ji<j<Jj,-

By the Corollary, by what we have seen in approximation on a reference,
and by the de la Vallée Poussin estimates, for each j; <j <, there exist
disjoint neighborhoods V, ;,..,V,.; and V; of y,;, .., y,,,; and y,,
respectively, with the properties

* o is constant on the product of any nof V' ;, .., ¥V, ;and V;; and

* for any reference Refe V; ;x --- x ¥V, ; and for any point ye V,
0 <drel /) <3d+7), Srer=25g, and |(f—grer)(¥)| > 3(d+7), whence, by
the exchange rule, e(Ref, y)=e(R;, y)).

Set

{xl,...,xN}= U {ylyja e yn+1,j}u{yj}’

n<i<h
define a function ¢: {1, .., n+ 1} x{j, ., j} = {1, ... N} by
if y,,=x, then o(i, j)=k,
define a function y: {ji, ..., j»} = {1, .., N} by
if y,=x, then Y(j)=k,

and choose disjoint neighborhoods U, ..., Uy of x, .., xy, respectively,
such that

V,; ;= U, whenever @(i, j)=k and V;< U, whenever y/(j)=k.

By the implication “(a)=>(c’)” in Lemma 1, there exist x¥,..,x% in
Ui, .., Uy, respectively, such that G|{xf¥, .. x¥} is n-dimensional and
satisfies the Haar condition. Set

Rj* = (x$(1,j), vy x;(n+ l,j)) for j,<j<j,.
It is clear, then, that

R}, = E(RF, xl,/l/‘(j)) for ji<j<js.
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Since p RFe(RY, 53 ) #0 for j, <j< s, it follows, by (4) of the exchange rule,
that

dpa(f)<dgy, (f)< - <drg(f),

whence, in particular,
* #*
le # RJ'2 ‘

We have reached a contradiction.

THE ALGORITHM. Let Y, be a finite subset of X and let R, be a reference
in Yy with the property that dp (f}>0. Then the algorithm

1. . Sei Y: Yl and Rle.
2. Calculate g, dg, and sg.
3. Calculate a point xeY  with the property  that

|(f—gr)x) =1/~ 8rll ¥

4. If [(f—gr)(x)| >dg, caleulate e(R, x) according to the exchange
rule, set R= E(R, x), and go to step 2.

5. IS/~ gp)(x)| =dg, calculate a point x € X with the property that
= gr)(x) = f—grll and set s=sgn(f—ggr)(x)-
6. Ex}ﬂbll Ya R, &rs dRa Sgs X, ;(f—‘gR)(x)iv and s.

7. If {f—goXx) >dy, calculate e{R, x) according to the exchange
rule, set R=E(R, x), set Y=Y U {x}, and go to step 2.

8. If |(f—gr)(x)| =dg, stop.

either is finite, i.e., reaches step 8, or else is not; in the former case, it is
obvious that when the algorithm reaches step 8, then gg is the o-alternator
of f in Gy in the latter case, the algorithm produces a sequence of functions
in G which converges to the o-alternator of f in G.

Proof. Suppose that the algorithm is not finite. As we have seen in the
discrete algorithm, it then exhibits, upon executing step 6, an increasing
sequence {Y, },.~ of finite subsets of X such that dim(G|Y,)=n, and for
each Y, a reference R, = (x4, ., X, 41,,) In ¥, with the property that g,
is a o-alternator on Y, of /in G. By the de 1a Vallée Poussin estimates,
gr € Py (f)for k=1,2, .., and thus, by the second discretization lemma in
the Appendix, the sequence {dy,(f)}i.n converges to d(f), and the
sequence { gz, }ren is a bounded sequence all of whose cluster points lie in
P(f). Let g be one of these cluster points. There exists a subnet {g Rk{} el
of the sequence {gg, }+.~ Which converges to g and for which

» for each i=1,.,n+1, there exists a point x,eX such that
lim, ., x; 5= x;;
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» for each i=1,..,n+1, there exists a sign s;e {—1, 1} such that
Op,,i=s; for all le L; and

» there exists a sign se { —1, 1} such that Sr,=s for all le L.
Clearly,
(f—8)(x) =%1€IIL1 (f—gr)xii)=5(=1)s; | f~gl for i=1,.,n+1

Just as in the final paragraph of the proof of 3 in the Theorem, one sees
that no two of the x; coincide. Thus, R=(x,, .., x,, ) is a reference in X
and, by the Corollary, oz;=s, for i=1,..,n+1, whence g is the
o-alternator of fin G. This shows that the sequence {gg, } ..~ converges to
the g-alternator of fin G, and we are done.

Remarks. 1. 1If, in the situation of the exchange rule, all the u, , are
non-zero, then the form of the uy ; given in (3) shows that condition (2)
actually characterizes the exchange index m, ie., the inf in (2) is attained
only at m; this, unfortunately, is not true in general, not even if all of the
Ug ; are NON-zero.

2. The o-alternators on finite subsets of X of f in G which we
calculate in the discrete algorithm are actually unique: repeat, verbatim,
our proof of the corresponding part of the Theorem.

3. There is a very short, very elegant, but highly non-algorithmic

proof for the existence of g-alternators on finite subsets of X of fin G: use
the implication “(a) = (c¢’)” in Lemma 1.

APPENDIX

THREE FACTS ABOUT R”. 1. Given a non-empty subset A of R”,

0 eint conv(4) (conv = convex hulli of)

iff there exist N=zn+1 distinct points a,, .., aye A which span R” and
positive real numbers a4, ..., ay such that ¥ a,a,=0.

2. Given Nzn+1 distinct points a,, ..., ayeR” which span R" and
positive real numbers d,, ..., oy such that 3"¥  o,a,=0, then any N points
by, ... by sufficiently close to ay, ..., ay, respectively, are also distinct and
span R" and have the property that 3.~ B,b,=0 for some positive real
numbers By, ..., Bn-

3. Given n+ 1 distinct points a,, ..., a, . 1€ R" which span R" and real

numbers o, .., a,,; not all zero such that 37! a,a,=0, there exists a
yeR ~ {0} such that

2, =y(— 1) det(ay, w, @y ayyq)  for i=1,.,n+1.
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Proof. 1. Suppose first that O eint conv(4). Let b, ..., b, be a basis for
R” and let ¢>0 be small enough that &b, ..., eb,, —e> 7, b,econv{4).
Obviously,

n

‘I n
Z] 8bj+m<—8 Z bi>=0.

J= i=1

n+1

Now write &by, .., &b,, —e >.i_, b, as convex combinations of elements of
A to obtain the desired ay, ..., ay and a,, ..., ay.

Now suppose that N >n+ 1 distinct points a,, .., aye 4 span R"” and
have the property that % , «,a,=0 for some positive real numbers
oy, .y %y, Since ay, ..., dy span R”, the linear map

RY > R”

i=1

(B1s s B> 2. P

is onto and thus open. Now observe that

B:{(ﬁl, s B)eRY B, .., By>0and i /31.<1%

i=1 k4

is an open subset of R" whose image under this map contains 0 and is
contained in conv(4).

2. We may and shall assume that a,, ..., a, are linearly independent.
Then for any b, .., byeR" sufficiently close to ay, .., ay, respectively,
by, .., b, are also linearly independent, and the solution (f, .., 8,) € R” of
the system

n N
z Bibi= — Z ob;

i=1 i=n+1
has the property that §,, .., f,>0.

3. Again we may and shall assume that a,, ..., @, are lincarly inde-
pendent, Then, since (ay, ..., ®,) € R” is the solution of the system

n
Z A= =0, 414,41,
i=1
&, .1 70 and, by Cramer’s rule,

; N
a‘=~an+1(~1)ﬂ+ de[(al’mr a; -~->an+1) for i=1 "
! det(a;, ..., a,) T

640/66/3-3
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so that
_ (_1)n+1an+1
B det(ala ) an) '
A FAcT FROM LINEAR ALGEBRA. Consider these conditions on G.

(a) card Z(g)<n for every ge G~ {0}. Py

(b) For any distinct points X, .., x,.;€X, det(v(x), .., v(x;), ..,
v(x,4 1)) #0 for some ie {1, ., n+1}.

(c) For any 1 <m < n distinct points x, .., X, € X,

dim{geG:g(x,)= - =g(x,,)=0}
_(n—m if v(xy), .., v(x,,) are linearly independent
Cln—m+1 otherwise.

(d) For any 1 <m<n distinct points X, ... X, € X, if X7, a;0(x;,)=0
for some ay, .., a,eR~{0}, then any non-empty proper subfamily of
{v(x;)};=1...m is linearly independent.

Then (a) is equivalent to (b), (b) implies (c), and (c) is equivalent to (d).

Proof. (a)<>(b). This follows immediately from the observation that
for any distinct x,, .., x,, ;€ X and any g=>"7_, ¢;8,€G,

glx))=--=g(x,.1)=0 if Y c¢,g(x;)=0 for j=1,.,n+1.

i=1

(b)=(c). If x;, .., x,,€X are distinct, and if g=37_, ¢;g,€ G, then

g(x))= - =g(x,,)=0 iff Y c;g/(x)=0 for j=1,..,m

i=1
and

rank(v(x,), .., v(x,,)) =zm—1

(the rank condition is obvious if card X=n; if card X=n+1, choose
distinet x,,, q « X, 1€ X~ {x, ., X,,} and note that (b) says just that
rank(v(x,), ..., 0(x, 1)) =n).

(c)=(d). First note that (d) holds for trivial reasons if m = 1. Now,
let 2<m<n and let 37 , o,v(x;) =0 for some distinct x,, ..., x,,€ X and
some &, ..., &,,€ R~ {0}. For ie {1, .., m},

()= = 3 ot

PR
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whence
AN
rank(v(x,), .., v(x;), ..., 0(X,,)) = rank{v(x,), ..., v(x,,)),

and the latter rank, by (c), is m— 1.

{d)=>(c). First note that (c) holds for trivial reasons if m=1. Now,
let 2<m<n and let x, .., x,,€ X be such that v(x,), ..., v(x,,) are linearly
dependent. Part (d) implies that there is exactly one non-empty subset 7 of
{1, .., m} with the property that >, ,a,0(x;)=0 for some non-zero real
numbers «;, i€ I: Were there two distinct such sets, say,

Z “i,lu(xi)z(): Z ai,zv(xi)»

iel iel

then

1
& Z ai,lv(xi)+; Z o -0(x;)=0

iely iel
for every ¢ > 0; and for ¢ sufficiently small,
1.
€ Z ooy o <—inf | 5],
iel Eieh

so that ea; ; + (1/e)o, , #0 for every ie I, n1,. This shows that / is indeed
unique, and then it is clear that for each ie I, the vectors

{v(xj)}je {1,.am}~ {1}
are linearly independent.

Tue UNIFORMITY OF X. The set
% = {U : Uis aneighborhood of 4, in X?}

is the unique compatible uniformity of X, in the sense that for every xe X
the set

{Ulx]:Ueu}
is the neighborhood filter of x; here
Ulx]={yeX:(x, y)eU} for every Ue % and every xe X.

This can be found, for example, in J. L. Kelley [7]. Al other uniform
notions employed in the present paper can also be found there, with the
exception of the following.
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For Ue, a subset Y of X is a U-net in X if

X= U Ulyl

yeY

By compactness, for every Ue %, there exists a finite U-net in X.
For a non-empty equicontinuous subset F of C(X), the joint modulus of
continuity of F is the function defined by

Q(F; U)=sup{sup{|f(x)—f () : (x, y)e U} :feF},  Ue4.
By uniform continuity, if % is directed by

UsV if UoV,

then, for every non-empty equicontinuous subset F of C(X), the net
{Q(F; U)}yq converges to zero, in symbols,

lim Q(F; U)=0.

Uea

The following two discretization lemmas are adaptations of results of
E. W. Cheney [2].

THE FIRST DISCRETIZATION LEMMA. Let fe C(X)~ G, let {U,}ion be a
sequence in U such that

‘Q(f; glaagn:Uk)gl/k far k=1>2,-">

and for each k€N, let Y, be a finite Ui-net in X and hy,€ Py (f).
Then the sequence {dy(f)}ien converges to d(f), and the sequence
{he}ren is uniformly bounded on X and all of its cluster points belong

t0 P(f).

Proof. Since G+ Rf is an (n+ 1)-dimensional subspace of C(X),

y=sup{|c1+ S Jei

i=1

of + Z Cigi{
i=1

< 1} < 0.
Fix ke N such that £ >y, and fix g=Y7_, ¢; g;€ G. Choose x € X such that
[(f—g)(x)| = |.f—gl and choose ye Y, such that

sup{[f(x)—f(P)], | g1(x) = g1(P)]; - 1 80(X) — g (¥)| } < VK.
Then
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1 n
(1 tL )
< f=gll =1/~ < |(f—g)x)— (f—g}») +1(f—2) )

S/x) =/ + i lesl 1gi(x) —gd ) + 1=l

1 "
g-é(l + ¥ Ici1)+ 1/ —gly,-
i=1

It follows that

(.;#%)(1 +,-§:1 |c£|>< IS~ s,

and with this that

17-gll<(1+2) 17l

This shows that if k£ >7, then
af < if—hd {1+ 2= )17l =(1+ 25 ) )
<O+ d) = )

whence {dy,(f)}ien and {||f— 5} on converge to d(f). This does it.

THE SeconD  DISCRETIZATION LEMMA. Let feC(X)~G, et
YicY,c - be an increasing sequence of finite subsets of X such that
dim{G| Y }=n, and for each keN, let h e P {f) and y €Y, , be such
that

=)yl Zdy )+ BUS = el —dy ()

Jor some constant > 0.

Then the sequence {dy(f)}ren converges (monotonically!) to d(f), and
the sequence {h;} .~ is uniformly bounded on X and all of its cluster poinis
belong to P(f).

Proof. Since dim(G|Y,)=n,

y=sup{ligl: lgly<1}<oo.
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If g€ G is such that | g} > 2y | f]. then for every ke N.
[ f—gl yk2 L/~ gl Y =gl N [ £ Y= 1&gl Y .f!

1 . . . .
2-ligh=1/1>21/ - 0fi=|1i

i

2\l v zdy (/)

and therefore g¢ P, (f). This shows that the scquence {A,},.\ is
uniformly bounded on X. Let 4 be a cluster point of {#,},.~ In G, say,
h=1lim, \ Ay, and set r=1im, ~ dy.(/). Then

r<d(f)S If—hl <L f—h |+ hy— Rl

/f(l(/ ) (Vi) — d)'k,,(,f.))*‘dyk!(f)‘* |y, — hll

B“ F=h Yyl + [y — ) —dy (1)

+ d)/h,(/) + 'ihk, — h“

<

1
5 (o ) U = bl =y () + (1)

+ i, —hl 1.

whence r=d(f) and he P(f). We are done.
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